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a b s t r a c t

This work focuses on the development of a novel linear stability criterion for the state of homogeneous
fluidization regime, based on a new mathematical model for gas-fluidized beds. The model is developed
starting from the well-known particle bed model. A mono-dimensional momentum balance is derived
leading to a set of equations which explicitly include voidage-gradient dependent terms (elastic force)
for both solid and fluid phases.
eywords:
as fluidization
tability criterion
athematical modelling

A fully predictive criterion for the stability of homogeneous fluidization state is here proposed, based
on the well-known Wallis’ linear stability analysis. The criterion requires the choice of an appropriate
averaging distance, which in the present development is found to be bed-voidage dependent. The linear
stability criterion resulted in turn in a simple, yet fully predictive, relationship for incipient bubbling
voidage.

Validation was carried out analyzing the influence of all physical properties and sensitivity to closure
ntial
relations, showing substa

. Introduction and literature review

Fluidized beds are often attractive alternatives to fixed beds
or several physical and chemical operation (e.g. heterogeneous
atalytic reactions, drying, mixing, heating or cooling). The main
dvantages of fluidized beds are related to high heat and mass
ransfer coefficients, high degree of mixing within entire bed, due
o the continuous circulation of solids. Thanks to these properties,
uidized beds are often smaller, more efficient and easy controlled
han fixed beds.

The drawbacks are related to uncertainties in the design and
caling of equipment, due to the great complexity of fluidization
ydrodynamics. For this reason the successful design of flu-

dized beds is strictly dependent on the development of advanced
athematical models. According to Ishii [22], fluidized beds are

onsidered in the class of dispersed flows. Mathematical modelling
f dispersed flows can be carried out adopting Eulerian–Lagrangian

r Eulerian–Eulerian frameworks.

Eulerian–Eulerian models, also referred as two-fluid models
TFM), are actually the most frequently adopted for granular flow
escription. Both fluid and granular phase are treated in an almost
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symmetrical way, by using for each phase mass and momentum
conservation equations typical of fluids.

General development of TFM, as presented in Enwald et al. [9],
starts from integral conservation equation of mass, momentum and
energy across phase boundaries. By applying Gauss and Leibniz
theorems, local instantaneous conservation equations and relevant
jump conditions are obtained. The subsequent step is the aver-
aging procedure, suitably devised in order to avoid the condition
of a space point in which only one phase exists, thus eliminating
the consequent difficulty in momentum transfer calculation across
phase boundary. An extensive literature was produced on averag-
ing procedures [1,22,3,26,9]. Volume averaging is actually the most
used in practical application, since it is possible to verify the scale
separation condition.

Once averaging procedures are applied, the complete set of par-
tial differential conservation equations is obtained (consisting of
one volume fraction balance, two mass conservation equations and
six momentum conservation equations to solve six velocity com-
ponents, two volume fractions and pressure).

The most commonly used forms of conservation equations have
been developed by Ishii [22] and Anderson and Jackson [1]. The
Ishii model was originally developed for liquid–liquid flows and

then was adapted to describe solid–fluid flows [8,9]. Conservation
equations for both phases are exactly symmetrical, and momentum
equations are both Navier–Stokes alike. Conversely, the Anderson
and Jackson model was directly derived for gas–solid dispersed
flows. It was originally formulated by Anderson and Jackson [1],
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Nomenclature

Ar Archimedes number
dp particles diameter [m]
F net force for unit volume [kg m−2 s−2]
FD drag force for unit volume [kg m−2 s−2]
g gravitational acceleration [m s−2]
n Richardson–Zaki expansion parameter
P pressure [Pa]
u local velocity [m s−1]
U0 superficial gas velocity [m s−1]
uD dynamic wave velocity [m s−1]
uk kinematic wave velocity [m s−1]
ut terminal settling velocity [m s−1]

Greek letters
˛ particles phase volume fraction
ı half of averaging length [m]
� fluid-phase volume fraction
� fluid viscosity [Pa s]
� density [kg m−3]
� generic scalar
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nd then revisited by Jackson alone [24–26]. The starting point is
set of local equations in the form of Navier–Stokes equations for

he fluid phase and second Newton’s law for particles. After averag-
ng, a set of partial differential equations (PDE) is obtained, similar
o Ishii’s ones but with some remarkable differences between the
uid and solid phases equations.

Within the class of TFMs, Gibilaro and Foscolo developed the
o-called particle bed model (PBM). The PBM is originated from

allis’ theory on the stability of homogeneous fluidization [48],
here it is stated the need for a voidage-gradient dependent term

n solid phase momentum balance to correctly predict the state
f homogeneous expansion of fluidized beds. Wallis’ theory, based
n fluid bed characteristic wave velocities, was further developed
y Foscolo and Gibilaro [11–14,17–19] who introduced the com-
lete formulation and theoretical bases for the elastic behaviour of
he fluidized beds. The PBM was eventually revisited by Gibilaro
16].

In this model the particle phase is considered as non-viscous
nd the isotropic contribution to the internal stress is considered
egligible, thus eliminating the need for complete stress tensor

ormulation. Moreover, interparticle forces are also assumed neg-
igible. Only fluid dynamic effects due to particle concentration
radients are considered through an elastic force contribution
ithin the momentum balance of the solid phase. Different

esearch groups have used the original PBM assumptions to develop
ew models for the description of fluidization hydrodynamics,
uch as Lettieri et al. [28], Brandani and Zhang [2]. PBM-based
imulations have been compared with relevant experimental data
29,32,34], showing promising predictivity.

In particular, Brandani and Zhang [2] started from Foscolo and
ibilaro’s PBM to derive a modified hydrodynamic model. They
tated that the elastic term in the solid phase momentum balance

quation, defined as an interphase force term (i.e. hydrodynamic
nteraction), does not disappear in overall momentum balance.
oth phases are treated as continua without any statement about
cale separation criteria or explicit averaging procedures. On this
asis, Brandani and Zhang [2] derived a mathematical model in
Fig. 1. Momentum balance scheme over a finite height section of a fluidized bed.

which the elastic force term is included in both fluid and solid phase
momentum balance equations.

As far as mathematical closure of the conservation equations
is concerned, it is necessary to completely specify momen-
tum transfer between phases (drag forces). Drag forces for
dense granular phases can be computed by suitably correcting
the well-established correlations developed for isolated parti-
cle, or from pressure-drop correlation derived for packed beds
[10,16,36,19,49,40,20,7,42,15,30,31].

On the above grounds, the present work stems from original
PBM [16] and the modified formulation by Brandani and Zhang
[2], with the aim to develop a new criterion for the prediction
of the onset of bubbling fluidization. This will be accomplished
through the development of a set of momentum equations includ-
ing suitable elastic terms, and the coupling and the linearization of
momentum equations.

2. Mathematical modelling

2.1. Hydrodynamic modelling

As mentioned earlier, the starting point for the derivation of the
proposed stability criterion is the formulation of suitable momen-
tum balance equations. The approach adopted in this work is that
of Eulerian–Eulerian hydrodynamic modelling (two-fluid model),
in which both granular and fluid phases are considered as inter-
penetrating fluids.

In particular, the derivation starts from taking into account only
gravity, buoyancy and drag forces, with the solid phase defined non-
viscous. A discrete momentum balance on both the fluid and the
granular phase can be written in mono-dimensional fashion (i.e.
along the vertical direction), with reference to a �z section of the
bed, in which variation of volume fraction occurs, as sketched in
Fig. 1:

�p
∂˛up

∂t
= �p[(˛u2

p)
z
− (˛u2

p)
z+�z

] + [(˛P)z − (˛P)z+�z] − ¯̨ �pg�z

+ F̄D�z + P̄�˛ (1)

�f
∂�uf

∂t
= �f [(�u2

f )
z
− (�u2

f )
z+�z

] + [(�P)z − (�P)z+�z] − �̄�f g�z
− F̄D�z + P̄�� (2)

In this balance, time averaged properties are considered, and
only spatial averaging procedure will be explicitly performed. The
momentum balance for each phase, in classical Eulerian–Eulerian
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ormulation, considers symmetrical forces acting on the relevant
ontrol volume: momentum (�iu

2
i
), hydrostatic pressure (P), grav-

tational force (�ig), interphase momentum exchange (drag force
D) and hydrostatic pressure contribution at the interphase bound-
ry. Each term is suitably multiplied by the relevant volume
raction. Notably, the forces acting on the interphase boundary are
onsidered as acting on its center. Hydrostatic pressure field is the
ame for both phases. Properties which values have been consid-
red at a suitable distance above the control volume bottom were
ndicated in general as �̄.

The momentum accumulation rate is intrinsically spatially
veraged and therefore does not require any further average. Con-
ersely, all terms in the form �̄ must be evaluated at �z/2, since
linear variation of volume fraction is assumed to occur. As a con-

equence, the following equations can be written in a symmetrical
orm for both particle and fluid phases.

In the past, a number of works dealt with the modelling of
nterparticle forces [39,37,46,45,44] and tensional stresses due to
article attrition and flow [9]. In particular, it was shown [23,16]
hat the state of homogeneous fluidization, without the inclusion
f suitable extra forces acting on the bed, is intrinsically unstable.
allis [48] demonstrated that the inclusion of an elastic force act-

ng on the granular phase can stabilize the state of homogeneous
uidization. Rietema and Piepers [39] reported that elastic forces
an arise from the onset of a stable mechanical structure in homoge-
eously fluidized beds. Conversely, Gibilaro [16] and Brandani and
hang [2] found that elastic forces arise from purely fluid dynamic
nteractions within the bed. In the present work the latter mod-
lling approach is adopted and further developed. Of course, the
eed for inclusion of further terms explicitly accounting for inter-
article forces will be discussed when presenting the results. With
egard to tensional stresses, it must be reminded that the model to
e proposed is aimed at the description of the incipient bubbling
tate, where granular phase motion is absent [37,43,33].

To accomplish the scale separation, the limit of Eqs. (1) and (2)
or �z approaching to a finite value of 2ı must be considered. In
ddition to limit computation, average properties included in Eqs.
1) and (2) have yet to be estimated. On the basis of the linear
pproximation considered, bed properties change linearly along z
irection. Therefore, for a generic scalar quantity evaluated at the
eight z + ı the following equality can be written:

¯ = � + ı
��

�z
(3)

he above expression may be adopted for each scalar quantity not
et averaged in Eqs. (1) and (2); dividing by �z, the following
xpression is obtained for solid phase:

p
∂˛up

∂t
= �p

−�
(

˛u2
p

)
�z

+ −� (˛P)
�z

−
[

˛ + ı
�˛

�z

]
�pg

+
[

FD + ı
�FD

�z

]
+
[

P + ı
�P

�z

]
�˛

�z
(4)

imilar equation is obtained for fluid-phase momentum balance
quation.

The ratios can be now substituted with the relevant partial
erivatives, being equal to first order terms inside the control vol-
me considered:

p
∂˛up

∂t
= −�p

∂(˛u2
p)

∂z
+
[

FD + ı
∂FD

∂z

]
−
[

˛ + ı
∂˛

∂z

]
�pg − ∂(˛P)

∂z
+ P
∂˛

∂z
+ ı

∂P

∂z

∂˛

∂z
(5)

he differential form of the momentum balance equation is finally
btained by neglecting the second order terms, such as that
ng Journal 157 (2010) 489–500 491

including the product of the pressure gradient and the volume frac-
tion gradient. By applying the same procedure to the fluid-phase
discretized momentum balance, the full set of momentum conser-
vation equations can be derived. Drag force derivatives with respect
to z coordinate are reported as in the following:

∂FD

∂z
= ∂FD

∂�
∂�
∂z

= ∂FD

∂˛

∂˛

∂z
(6)

The final momentum balance equations (Eqs. (8) and (7)), relevant
continuity equations (Eqs. (9) and (10)) and the volume fraction
balance equation (Eq. (11)) are reported in the following:

�p

(
∂˛up

∂t
+ ∂(˛u2

p)

∂z

)
= FD − ˛

[
�pg + ∂P

∂z

]
+ ı

[
∂FD

∂˛
− �pg

]
∂˛

∂z
(7)

�f

(
∂�uf

∂t
+

∂(�u2
f
)

∂z

)
= −FD − �

[
�f g + ∂P

∂z

]
− ı

[
∂FD

∂�
+ �f g

]
∂�
∂z

(8)

∂�
∂t

+ ∂�uf

∂z
= 0 (9)

∂˛

∂t
+ ∂˛up

∂z
= 0 (10)

� + ˛ = 1 (11)

With reference to right-hand side (R.H.S.) of momentum equation,
it is worth noting that, in addition to drag, gravity and buoyancy,
an extra term appears. Notably, the use of a finite length for spatial
averaging, large enough to include in the control volume a piece-
wise linear variation in the volume fraction along the 2ı vertical
distance, leads to the appearance of a term in momentum balance
equations which is dependent on the ı parameter and the voidage
gradient. Such term is quite similar in its expression to the extra
momentum term developed by Foscolo and Gibilaro [12] in the
original PBM, accounting for the elastic behaviour of the granular
phase. Moreover, it was demonstrated [48] that the coefficient of
the voidage-gradient dependent term is proportional to the square
of the shock propagation velocity uD in the relevant phase.

The symmetrical derivation of momentum balance equations
leads to the presence of an elastic term in both solid- and fluid-
phase equations. These elastic extra terms are obviously dependent
on the formulation of averaging length ı and drag force. The the-
oretical derivation of a closed formula for estimating ı will be
discussed in the next sections.

2.2. Constitutive equations and equilibrium conditions

The trivial steady state solution of the fluidized bed equations
implies an uniform expansion of the bed under given conditions
of inlet gas velocity and particle properties. The homogeneously
fluidization state is stable if any small voidage perturbation start-
ing in a point of the bed will decrease its intensity along its path.
Otherwise, homogeneous fluidization is an unstable condition, i.e.
any voidage perturbation will became larger along its path through
the bed. On this basis, the homogeneous fluidization state will be
subsequently regarded as the equilibrium condition, for any given

particle system and fluid velocity.

One of the fundamental relations for the description of homoge-
neously fluidized bed is the well know Richardson–Zaki expansion
law [36], linking inlet gas superficial velocity U0 with particle and
fluid bed characteristics (voidage � and particle settling velocity
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t):

0 = ut�n (12)

here the exponent n was theoretically found to be bounded by
he values 2.4 for inertial regime and 4.8 for viscous regime.

In this work a drag force formulation based on the
ichardson–Zaki expansion law [36] is adopted, as derived by Gibi-

aro [16]:

D = 1 − �
�3.8

(�p − �f )g
(

U0 − up

ut

)4.8/n

(13)

xplicit expressions for drag force and its derivative will be needed
or the formulation of the stability criteria. Near-equilibrium
pproximations can be used to formulate simpler linear stability
nalysis. The use of an equilibrium formulation can correctly con-
ider the instability phenomena arising from small perturbations of
n initial equilibrium condition, nevertheless giving much simpler
ormulations.

The equilibrium conditions for the homogeneously fluidized bed
an be written as follows:

up = 0
U0 = ut�n (14)

here the second equality is the Richardson–Zaki expansion law.
y substituting Eq. (14) into Eq. (13), the following expressions for
ear-equilibrium drag force and relevant partial derivative with
espect to voidage are obtained:

D,ne = �(1 − �)(�p − �f )g (15)

∂FD,ne

∂�
= (1 − 2�) (�p − �f )g (16)

wo other drag force expressions will be considered for the purpose
f comparison, both reported by Gibilaro [16]:

D = 3�f U2

4dp

(
0.63 + 4.8

Re0.5
p

)2

(1 − �)�−3.8 (17)

D = �f U2

dp

(
0.33 + 18

Rep

)
(1 − �)�−3.8 (18)

he first relation (Eq. (17)) is the expression for single particle drag
orce [5], corrected for dense bed condition [49], hereafter referred
s DV drag. The second relation is a modified Ergun equation devel-
ped by Gibilaro et al. [19], hereafter referred as ME drag (Eq. (18)).

The expression for near-equilibrium drag forces in both cases
re obtained by inserting Eq. (14), respectively, into Eqs. (17) and
18):

D,ne = 3�f u2
t

4dp

(
0.63 + 4.8

Re0.5
t �0.5n

)2
(1 − �)
�3.8−2n

(19)

D,ne = �f u2
t

dp

(
0.33 + 18

Ret�n

)
(1 − �)
�3.8−2n

(20)

.3. Momentum equation coupling

General two-phase coupling [16] is achieved getting the pres-
ure gradient from the fluid-phase momentum equation (Eq. (8)),
nd then substituting it in the particle phase momentum equation
Eq. (7)).

The general form of pressure gradient can be obtained from the

uid-phase momentum equation:

∂P

∂z
= −�f

(
∂�uf

∂t
+

∂(�u2
f
)

∂z

)
− FD

�
− �f g+1

�

(
−∂FD

∂�
−�f g

)
ı

∂�
∂z

(21)
ng Journal 157 (2010) 489–500

This general procedure can be particularized for gas fluidiza-
tion, by introducing the negligible gas-density hypothesis, i.e. any
gas-density dependent term of the fluid momentum equation
is considered negligible with respect to solid-density dependent
terms. This assumption is valid in the case of gas fluidization, in
which gas-density is about three orders of magnitude smaller than
solid density. The pressure gradient previously derived for general
phase coupling (Eq. (21)) can be now written as in the following:

∂P

∂z

∣∣∣∣
�f =0

= −1
�

(
FD + ı

∂FD

∂�
∂�
∂z

)
(22)

In this approach inertial terms depending on gas-density are
neglected. Conversely, the elastic force and the drag force affect
the pressure gradient profile, and therefore the global hydrody-
namics. Such a mathematical development where the fluid-phase
elastic term is present will be hereafter referred as partial decou-
pling approach (PDA). This is quite different from what could be
obtained applying the same procedure to the original PBM momen-
tum equations [16], since the elastic term does not appear in the
fluid-phase momentum balance equation.

Eqs. (15) and (16) for near-equilibrium drag force can be easily
substituted into Eq. (22) to obtain a simple formulation of pressure
gradient:

∂P

∂z

∣∣∣∣
PDA

= (1 − �)(�p − �f )g + (1 − 2�) (�p − �f )g
�

ı
∂�
∂z

. (23)

Starting from the PDA, a further simplification can be made by
substituting Eqs. (15) and (16) into Eq. (22) and neglecting the
elastic term:

∂P

∂z

∣∣∣∣
TDA

= (1 − �)(�p − �f )g (24)

The resulting equations (Eq. (24)) will be hereafter referred as total
decoupling approach (TDA). Notably, the TDA will lead to the same
results of the original PBM, if a suitable constant value of the ı
length is adopted.

In order to derive a coupled equation to describe the behaviour
of small voidage perturbations travelling along the fluidized bed
Eqs. (13) and (11) are inserted in the R.H.S. of the solid phase
momentum balance equation (Eq. (7)):

�p

(
∂˛up

∂t
+ ∂(˛u2

p)

∂z

)
= (1 − �)

[
(�p − �f )g

�3.8

(
U0 − up

ut

)4.8/n
]

− (1 − �)

[
�pg+∂P

∂z

]
+ı

(
∂FD

∂�
+�pg

)
∂�
∂z

(25)

By rearranging and putting in evidence the voidage-gradient
dependent terms, the following coupled balance equation is
obtained:

�p

(
∂˛up

∂t
+ ∂(˛u2

p)

∂z

)
= F + ı

(
∂FD

∂�
+ �pg

)
∂�
∂z

(26)

The net force term F includes, in its complete non-equilibrium
expression, drag, pressure gradient and gravity terms:

Fnet = (1 − �)

[
(�p − �f )g

�3.8

(
U0 − up

ut

)4.8/n
]

− (1 − �)

[
�pg + ∂P

∂z

]

(27)

For PDA the final coupled momentum equation is obtained by sub-
stituting the relevant expression of the pressure gradient (Eq. (23))
in Eq. (27), and the relevant partial derivative of drag force (Eq. (16))
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n Eq. (26). By rearranging, the following is obtained:

p

(
∂˛up

∂t
+ ∂˛u2

p

∂z

)
= FPDA + �pu2

B
∂�
∂z

(28)

PDA = (1 − �)(�p − �f )g

[
1

�3.8

(
U0 − up

ut

)4.8/n

− �

]
(29)

2
D,PDA = (1 − �)

�
ıg (30)

here the dynamic velocity uD,PDA appears.
The same procedure can be adopted by using the TDA equa-

ions for near-equilibrium pressure gradient, i.e. Eq. (24) instead
f Eq. (23). Eventually, equations identical to Eqs. (28) and (29) are
btained, with the only difference in the formulation of the dynamic
elocity (Eq. (30)), as reported below:

2
D,TDA = 2(1 − �)ıg (31)

. Linear stability criteria

As discussed in detail elsewhere [16], the linear stability analysis
s based on the decomposition of variables of the coupled momen-
um equation (Eq. (28)). In particular, voidage is expressed as the
um of two terms: an equilibrium value �0 plus a deviation from
quilibrium �∗; particle velocity equilibrium value is assumed to
e zero, so that particle velocity deviation value coincides with up.
nder the hypothesis of near-equilibrium conditions, the relevant
aylor expansion of Eq. (28) leads to a travelling wave equation for
he �∗ variable. The solution of this linearized equation reveals that
ll voidage perturbation wave velocities in the bed are bounded by
he kinematic wave velocity (long wave) and the dynamic wave
elocity (short wave).

In general, the condition for the exponential decline of a
oidage perturbation amplitude along the bed (necessary for sta-
le behaviour of homogeneous fluidization) is that uD is higher than
he kinematic wave velocity uk. In form of dimensionless stability
unction S:

= uD − uk

uk

{
> 0 homogeneous
= 0 incipient bubbling
< 0 bubbling

(32)

n this work, the kinematic wave velocity expression developed by
ibilaro [16] is adopted:

k = nut(1 − �)�n−1 (33)

.1. Definition of the length parameter

Both Eqs. (30) and (31) needs the definition of the ı length, and
herefore the height of the finite control volume. For this purpose,
n mono-dimensional formulation, a control volume can be taken
n which a perturbation of the flow field starts at the bottom. This
erturbation needs a time interval �t to travel through the first
article layer of height dp, and this time interval depends on the
verage interstitial gas velocity. It is computed according to the
quilibrium expansion law proposed by Richardson and Zaki [36]:

t = dp

uf
= dp

U0/�
= dp

ut�n−1
(34)
uring the same time interval �t, a voidage perturbation trav-
ls through the control volume at the kinematic wave velocity, by
ssuming that the wave passage leads to an instantaneous change
f voidage from the initial equilibrium value to the final. The kine-
atic wave velocity actually travels along a distance ı equal to half
ng Journal 157 (2010) 489–500 493

height of the control volume in the time interval �t, as reported in
the following expression:

�t = ı

nut(1 − �)�n−1
(35)

Under these hypotheses, the full range of states involved in voidage
perturbation initiation would occur within the whole control vol-
ume:

• the flow perturbation is located at the bottom of the control vol-
ume;

• the idealized kinematic wave is located at half height;
• the top is surely not affected by any perturbation, even if the front

of the kinematic wave is dispersed by inertial effects.

Such definition of the control volume is certainly valid for a lin-
ear stability analysis, where the incipient bubbling state implies
the equality of characteristic wave velocities, thus avoiding any
perturbation to travel faster than the kinematic waves.

Eventually, by comparing Eqs. (34) and (35) the time interval �t
disappears:

ı = (1 − �)ndp (36)

In mono-dimensional formulation, these assumptions lead to the
definition of a control volume height variable with voidage. This is
a substantial new result in fluidized bed modelling, with respect
to both PBM [16] and the Brandani and Zhang model [2], that will
be hereafter referred in the following as BZM. Remarkably it was
obtained without any particular assumption but the validity of the
Richardson and Zaki [36] expansion law.

Once the averaging length is defined, Eq. (36) can be substi-
tuted in Eqs. (30) and (31) to obtain the final expressions for uB

in the case of TDA and PDA, respectively. Remarkably, the main
difference of the present formulation with respect to those by Gibi-
laro [16] and Brandani and Zhang [2] lies in the expression of the
dynamic velocity uD in terms of functional dependence from the
local voidage:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2
D,TDA = 2ndpg(1 − �)2

u2
D,PDA = ndpg(1 − �)2�−1

u2
D,PBM = 3.2dpg(1 − �)

u2
D,BZM = dpg(1 − �)�−1

(37)

Substituting these expressions in the stability function reported
in Eq. (32), two fully predictive stability criteria can be obtained,
i.e. the total decoupling (TDA) and the partial decoupling (PDA)
criterion:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TDA → �mb =
(

2gdp

nu2
t

) 0.5
n − 1

PDA → �mb =
(

gdp

nu2
t

)0.5/(n−0.5)
(38)

Formulation of both criteria does not include adjustable parame-
ters, therefore leading to fully predictivity. The TDA-based criterion
neglects the influence of the elastic term in the fluid-phase momen-
tum balance, thus resulting analogue to the stability criterion
obtained on the basis of the PBM, with the exception derived by

the use of a voidage dependent term in averaging length. This fact
lead to a notably different behaviour of the stability function, as
will be extensively discussed in the next sections of this work. Con-
versely, the PDA-based criterion includes both new assumption of
the model, i.e. the elasticity of the fluid phase, as in Brandani and
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Table 1
Parameters tested.

Parameter Range

Temperature [◦C] 25–900
Pressure [bar] 1–140

F
(

94 A. Busciglio et al. / Chemical Eng

hang [2], and the use of a voidage dependent averaging length.
owever, in the BZM a constant averaging length equal to dp is
dopted in order to best fit literature data on minimum bubbling
oidage. In the present formulation, the averaging length is theo-
etically derived and found to be dependent on local voidage.

. Results and discussion

The two previously derived approaches will be now analyzed,
.e. the total decoupling approach (TDA) and the partial decoupling
pproach (PDA). The latter is the most general criterion for the case
f gas fluidization, while the former is derived under the further
ypothesis of negligibility of the elasticity term in the fluid phase.
oth criteria are fully predictive, and they just need a closure rela-
ionship to estimate the Richardson and Zaki [36] parameter n and
he terminal settling velocity of particles, ut . For the sake of com-
arison, the correlations used in this work for such estimates are
he same used by Gibilaro [16]:

r = gd3
p�f (�p − �f )

�2
f

(39)

= 4.8 + 0.1042Ar0.57

1 + 0.043Ar0.57
(40)

t = �f

�f dp

[(
−3.809 + 3.8092 + 1.832Ar0.5

)0.5
]2

(41)

The original PBM formulation leads to the following stability
riterion to predict incipient bubbling voidage:

1.79
(

gdp

)0.5( �1−n
mb

)

n u2

t (1 − �mb)0.5
= 1 (42)

The stability criterion of the BZM is obtained by the substitu-
ion of ı with dp as averaging length in the PDA formulation of the
ynamic wave velocity. This leads to a quite similar dependency on

ig. 2. Temperature effect on MBV [41,35]: (a) MBV of FCC catalyst (75 �m) fluidized by a
65 �m) fluidized by nitrogen.
gs/g 1–3
Particle density [kg/m3] 500–2500
Particle diameter [�m] 20–140

voidage with respect to the original PBM stability criterion:

1
n

(
gdp

u2
t

)0.5( �0.5−n
mb

(1 − �mb)0.5

)
= 1 (43)

The influence of several physical parameters such as gas phase pres-
sure (influencing mainly gas-density and viscosity), temperature,
particle diameter and density, strength of gravitational field will be
compared with literature data. Table 1 summarizes the parameters
and their relevant ranges here analyzed.

The prediction of both PDA and TDA criteria have been validated
with literature data. Moreover the predictions by the original par-
ticle bed model and the model proposed by Brandani and Zhang
[2] will be also reported for the sake of a complete critical anal-
ysis. MBV predictions by means of PDA using different equations
for the drag force (Eqs. (19) and (20)) will be reported only in a
later section. Relevant stability criteria analytical expressions are
not reported here.

4.1. Temperature effect

The effect of temperature is reported in Fig. 2. In particular, in
Fig. 2(a) experimental results obtained by Rowe [41] are shown in

terms of minimum bubbling voidage (MBV) of fine FCC catalyst at
temperatures between 25 and 500 ◦C. Experimental data show an
increase of MBV mainly due to the increased viscosity of the gas
phase. Prediction of TDA and PDA are both correct in estimating
data trends, although an overestimate is evident. BZM also shows

ir; (b) MBV of FCC catalyst (103 �m) fluidized by nitrogen; (c) MBV of FCC catalyst
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ig. 3. Pressure effect on MBV [27,4]: (a) MBV of carbon powder (44 �m) fluidized
owder (63 �m) fluidized by CF4.

n overestimate which furthermore increases with temperature.
verage overestimate by TDA and BZM is about 16%, while PDA
hows an average discrepancy of 13%. For this data set, the PBM
redictions are the best.

In Fig. 2(b) and (c) the experimental results by Rapagná et al. [35]
re shown for the case of a FCC catalyst at temperatures between
5 and 900 ◦C. The predictions are correct for all models with PBM
howing an optimal match for temperatures up to 200 ◦C. TDA and
DA slightly overestimate MBV values (5%), while PBM predictions
how a slight underestimation of MBV.

Other literature data on the effect of operating temperature have
een considered [28,32,21]; they will be reported in a later section
n overall model predictivity.

.2. Pressure effect

The pressure effect on MBV is shown in Fig. 3. Pressure mainly
nfluences the gas-density value, resulting in an increase of MBV

ith pressure. Pressure and temperature are taken in ranges for
hich gas viscosity variations are negligible or second order effects.

n Fig. 3(a) and (b) experimental data by Jacob and Weimer [27] are
hown (particles with dp = 44 �m in the former, dp = 112 �m in
he latter, fluidized with syngas H2/COvol = 0.8, P = 20–120 bar).
n Fig. 3(a) it is possible to observe that the prediction of MBV by
DA are in very good agreement with experimental data, while
DA shows an average overestimate (less than 10%) of MBV val-
es. BZM failed to predict the transition between particulate to
ubbling fluidization, because of the sensitivity of the stability
unction at high voidage bubbling systems. The PBM appears to
e less sensitive to the numerical stability of the criterion with
espect to BZM stability function, but for high MBV values this
odel also appears to uncorrectly predict the fluidization regime

ransition.

Fig. 3(b) shows that the predictions of MBV values by PDA and

DA slightly underestimate (less than 7% for PDA, less than 4% for
DA) MBV values. BZM underestimates MBV at low pressures and
verestimates MBV at high pressures, PBM systematically under-
stimates MBV of about 15%.
ngas; (b) MBV of carbon powder (112 �m) fluidized by syngas; (c) MBV of carbon

In Fig. 3(c) the experimental results by Crowther and White-
head [4] are shown (carbon powder, 63 �m fluidized with CF4) with
pressures ranging from 30 to 70 bar. The systems reported exhibit
high MBV at lower pressures and absence of bubbling at higher
pressures. It can be clearly observed that the TDA better predicts
the behaviour of the powder at all pressures. The PDA shows sim-
ilar predictions but with higher overestimates at lower pressures,
while both the PBM and the BZM fail to predict the transition from
homogeneous to bubbling fluidization.

Other literature data on the effect of operating pressure have
been tested [47] but they will be reported in a later section on
overall model predictivity.

4.3. Gravitational field strength effect

In Figs. 4 and 5 the data by Rietema and Mutsers [38] on the effect
of gravitational field strength are analyzed. The authors adopted
different granular materials (FCC catalyst and polypropylene par-
ticles, PP) with different gases (H2, N2) in a centrifuge in which
the gravitational field strength was varied from the normal value
to three times the normal value. The experimental results show
a decreasing trend in MBV, mainly due to an increased weight of
particles, somewhat similar to an increase in particle density.

Fig. 4(a), in which PP/H2 data are reported, shows an under-
estimation (between 18% and 27%) of MBV values for all models,
with TDA showing the minimum underestimation and the PBM
the maximum underestimation. Predictions for the system PP/N2,
reported in Fig. 4(b), show that both PDA and TDA correctly pre-
dict MBV values with slight underestimates (less than 4% for TDA,
less than 7% for PDA), while BZM behaves differently, especially
near standard gravity. Conversely PBM predictions results in the
largest underestimations of the MBV. In Fig. 5(a) the system FCC/H2
is shown, for which all models give correct predictions, with slight

underestimates in MBV values, larger for PBM and BZM (about
20%), and smaller for TDA and PDA (14%). In Fig. 5(b) data for
FCC/N2 system are shown, for which prediction of MBV by PDA and
TDA are substantially overlapped and in excellent agreement with
experimental data, while PBM and BZM predictions suffer from a
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Fig. 4. Gravitational field strength effect on MBV of polypropylene particles [38]:
(a) incremented gravity (hydrogen) and (b) incremented gravity (nitrogen).

Fig. 5. Gravitational field strength effect on MBV of FCC catalyst particles [38]: (a)
incremented gravity (hydrogen) and (b) incremented gravity (nitrogen).
Fig. 6. Experimental data reviewed by Gibilaro [16] about particle density effect on
MBV of different powders (60 �m) fluidized by ambient air and model predictions.

systematic underestimation (less than 5% and 10%, respectively). It
is important to point out the evidence of a systematic disagreement
exhibited by all models for the cases of experiments conducted with
hydrogen.

4.4. Particle density effect

Fig. 6 shows the effect of particle density on the MBV value.
Data are extrapolated from several literature works and reviewed
by Gibilaro et al. [17]. They refer to cases of fluidization of various
particles having the same diameter with ambient air. As expected,
MBV value decreases with particle density. The PBM prediction
shows the best matching for all the systems analyzed. Conversely,
BZM shows acceptable agreement only at lower MBV values. This
is probably due to the sensitivity of the stability criterion. TDA and
PDA show an overestimate over the entire density range (less than
11% for PDA), but a qualitatively correct trend prediction is found.

4.5. Particle diameter effect

Fig. 7 reports experimental data to assess the particle diame-
ter effect [4,6,50]. In particular, Fig. 7(c) shows a system exhibiting
always particulate fluidization at lower diameters and transition
to bubbling fluidization at higher diameters. PBM and BZM are not
able to predict such transition, while TDA and PDA show the cor-
rect trend, with fairest agreement for TDA (error less than 10%).
Also for the case of the experimental data reported in Fig. 7(b) and
(c) similar considerations apply. PBM gives a good agreement only
for systems with low MBV value. The BZM predictions also follow
a correct trend at low MBV values. Both PBM and BZM show in fact
significant levels of overestimation for systems with high MBV due
to the numerical sensitivity of the linear stability criterion. Con-
versely, TDA predictions provide better agreement with minimum
underestimate for large diameters (less than 6%) and slightly higher
overestimates for small diameters.
An effort has been made to discuss the effect of particle
forces. When interparticle bounding forces are higher than particle
weights, a cohesive behaviour of powders will result, or a homo-
geneous expansion of particle aggregates [45]. For this last case,
predictions of MBV result always in homogeneous fluidization.
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Each model presents its own distribution of prediction resid-
uals (i.e. difference between model predictions and experimental
data). In particular, the mean value of percentage residual and rele-
vant standard deviation (STD) are used to characterize the residual
ig. 7. Particle diameter effect on MBV [4,6,50]: (a) MBV of carbon powder fluidized
y air.

owever, when the average size and density of aggregates [45] is
aken into account, excellent agreement with experimental data is
btained, as it can be seen in Fig. 8. Notably TDA predictions give the
est agreement with experiments, while PDA predictions slightly
nderestimate the MBV. PBM predicts the transition to bubbling
nly for the largest particles, while BZM predicts always homo-
eneous fluidization for the smallest particle sizes, and a sudden
ecrease of MBV at larger particle diameters. Such results underline
he crucial importance of the modelling of interparticle forces for
mall (or light) particles (i.e. for the prediction of aggregates proper-
ies), and highlights that the behaviour of the resulting aggregates
s fully described by the governing equations of fluid motion.
.6. Overall predictivity

On overall, the predictions obtained by the stability crite-
ia derived from the presented model in its mono-dimensional

ig. 8. Experimental data by Valverde et al. [45] about particle diameter effect on
BV of different additivated toners fluidized by nitrogen and model predictions by

sing aggregates average size and density measured by the same authors.
gon at 67 bar; (b) MBV of alumina fluidized by air; (c) MBV of FCC catalyst fluidized

formulation show good agreement of predictions with relevant
experimental data. As it can be seen in Fig. 9, TDA and PDA give
rise to the lowest data dispersion, especially at higher MBV values
(where PBM and BZM are not able to predict the transition from
homogeneous to bubbling fluidization). In particular, PDA shows
the minimum data dispersion between all models.
Fig. 9. Comparison between MBV experimental values and model predictions.
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Table 2
Fitting parameters values.

Approach % Mean % STD

PDA 0.07 8.48
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TDA 1.63 9.93
PBM 1.30 14.08
BZM −6.91 11.17

istribution, as reported in Table 2. It is worth noting that mean
esiduals are in the range of ±2% with the exception of BZM, and rel-
vant standard deviation lie in the range ±15%. TDA and PDA show
he smaller values of both mean value and standard deviations, with
est results obtained by PDA.

For the sake of comparison, as an alternative to the
ichardson–Zaki equation for the drag force, overall predictions
btained by means of Eqs. (19) and (20) are shown in Fig. 10. Unex-
ectedly, the such predictions lead to worse agreements, especially
or systems exhibiting high MBV. This is due to the fact that the elas-
ic force depends on the derivative of the drag force with respect
o voidage, rather than the drag force value itself.

It is worth noting that with reference to the literature data here
nalyzed, both TDA and PDA correctly describe the behaviour of
articulate systems with MBV equal to one (i.e. those systems not
howing a transition from homogeneous to bubbling fluidization).
onversely, PBM and BZM results in predicting values of MBV equal
o one in 7 and 14 systems here examined, respectively, for systems
aving MBV less than unity.

Using the stability criteria derived from TDA and PDA, a pre-
icted Geldart chart for fluidization with ambient air can be
btained, as shown in Fig. 11. The separation line between group-A
nd group-B powders is obtained by finding the density-diameter
ouples with MBV value equal to 0.40 (i.e. for which MBV is equal
o the maximum packing voidage value), while the separation line
etween group-B and group-D powders is obtained by finding the
ensity-diameter couples for which MBV value is equal 0.1, on the

ase of fluidization quality considerations [16]. It is evident from
ig. 11 the sound agreement between model predictions and the
ell-known Geldart chart.

ig. 10. Comparison between MBV experimental values and PDA predictions when
sing different drag force expressions.
Fig. 11. Experimental Geldart chart and predicted chart by TDA and PDA.

5. Comparison of alternative stability functions

All functional dependencies of the stability function for TDA,
PDA, PBM and BZM were analyzed. In general the stability function
for each model takes the form reported in Eq. (32). Each model,
in particular, is characterized by its own definition of the dynamic
wave velocity, leading to different functional dependencies of the
stability function. In the case of PBM and BZM, a characteristic
asymmetrical U-shaped stability function is obtained, as it can be
easily observed in Fig. 12, where all the stability function for a
particular test case have been reported as a function of voidage

�. These curves exhibit a descending section at low voidage, a
plateau section and a suddenly increasing asymptote at voidage
values approaching to one. This is a marked difference with respect
to the monotone decreasing dependence of the stability function
for both TDA and PDA. Different systems show different values

Fig. 12. Typical stability function plot for Geldart-A powder.
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ig. 13. Influence of drag force correlation on TDA stability function plot for Geldart-
powder.

f the stability function, but the shape remains substantially the
ame.

The lower value of the two roots of the stability function is the
value corresponding to incipient bubbling conditions. Gibilaro

16] found that the higher value of the two roots corresponds to
he bubble phase voidage value. On this ground, the newly formu-
ated models are not able to predict this second root, because of the

onotonic behaviour of the relevant stability functions.
Nevertheless, the U-shaped stability functions of PBM and BZM

ead to the impossibility of predicting MBV values lying on the right-
and side of the minimum value of the stability function itself.
his in practice cancels out the possibility of predicting MBV values
igher than 0.80 for PBM and 0.85 for the BZM.

It is worth noting that different expressions of near-equilibrium
rag force results in different dependencies on voidage, as reported

n Fig. 13. In particular, U-shaped curves result for Dallavalle and
odified Ergun drag formulation. This occurrence leads to the exis-

ence of two roots, whose physical meaning was discussed above,
ut negatively affects the model predictivity at high MBV values, as
een in Fig. 10. It should be therefore emphasized the importance
f selecting the Richardson–Zaki drag expression [16], which best
escribes the voidage dependence of drag force for homogeneously
uidized beds.

On overall, TDA and PDA stability functions show an increased
obustness for prediction of MBV with respect to PBM and BZM,
hanks to the monotonic dependence on voidage of the stability
unction. This feature makes possible to predict MBV values over
he entire range. The information from the second root of the PBM
tability function can not be obtained by TDA and PDA, however,
oth approaches have the noticeable advantage of an accurate and
obust fully predictivity.

. Conclusions
The proposed linear stability criteria have been derived start-
ng from the formulation of the PBM as revisited by [2], with the
im to purposely introduce an averaging length on the basis of a
heoretical analysis at incipient bubbling fluidization.

[

[

ng Journal 157 (2010) 489–500 499

In particular, the stability criteria were obtained by introducing
an alternative elastic term and a new voidage dependency on the
local elastic properties in both the fluid and particle phase momen-
tum equations. The balance equations thus obtained were suitably
coupled and linearized to derive the stability criteria.

Validation of the proposed model was carried out by means of a
simple mono-dimensional linear stability analysis. From such anal-
ysis two different criteria to predict the onset of bubbling resulted.
Predictions so far obtained on the base of the proposed stability
criteria were finally compared with literature data available. On
overall the agreement was found good particularly for the case of
systems characterized by high values of MBV, where the previously
developed models (i.e. PBM and BZM) were not able to make reliable
predictions.

This is mainly due to the characteristic monotonic dependence
on voidage of the newly developed stability functions, which are
markedly different from those of PBM and BZM.
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